سفارش تبلیغ
صبا ویژن

مقاله بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی در pdf

 

برای دریافت پروژه اینجا کلیک کنید

  مقاله بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی در pdf دارای 28 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی در pdf   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه مقاله بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی در pdf

مقدمه  
سرد کردن یون‌ها در میدآنهای چهارقطبی  
مشخصات پرتوهای مورد نیاز فن‌آوری نانویی  
نتایج تجربی  
خلاصه  
منابع و مراجع:  

بخشی از منابع و مراجع پروژه مقاله بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی در pdf

1    H. Goldstein, “Classical Machanics”, Addison-Wesley, Reading (1980)
2.    Eric A. Cornell, Wolfgang Ketterle, Carl E. Wiemen, “Bose-Einstein Condensation in dilute gases of Alkali atoms”, The 2001 Nobel Prize in Physics
3.    R.E. March and J.F.J. Todd, “Modern Mass Spectrometry-Practical Aspects of Ion Trap Mass Spectrometry, CRC Press series (1995)
4.    A.M. Ghalambor Dezfuli, “Injection, Cooling and Extraction of Ions from a Very Large Paul Trap”, Ph.D. Thesis, McGill University (1996)
5.    A.M. Ghalambor Dezfuli, “Ion Trap Nanotechnology” Physical society, Physics Department McGill University, Montreal Quebec Canada (2001)
6.    T. Kim. “Buffer gas cooling of ions in a radio frequency Quadrupole ion guide”. Ph.D. Thesis, McGill University Montreal (Quebec), August (1997)

مقدمه

عنصر اساسی در توانایی ما برای مشاهده، ساخت، و در بعضی موارد به‌کاراندازی دستگاههای بسیار کوچک فراهم بودن پرتوهای ذره‌ای بسیار متمرکز، مشخصا” از فوتون‌ها، الکترون‌ها و یون‌ها می‌باشد

قانون عمومی حاکم بر اثر ذرات برخوردی، بیان می‌دارد که چنانچه تمایل به تمرکز یک پرتو از ذرات به یک نقطه با اندازه مشخص داشته باشیم، طول موج وابسته به ذرات برخوردی باید کوچک‌تر از اندازه قطر نقطه مورد نظر باشد. روابط حاکم بر انرژی و بالطبع طول موج این ذرات بیان کننده آن است که اتم‌ها و بالطبع یون‌ها مناسب ترین کاندیداها برای این آزمایشات می‌باشند (جدول 1)

انرژی‌های مختلف E 0 (eV)

طول موج ذره (mm)

106

105

104

103

102

 

 

6-10*24/

5-10*24/

4-10*24/

3-10*24/

2-10*24/

6-10*24/

24/

فوتون‌ها

7-10*7/

6-10*70/

5-10*22/

5-10*88/

4-10*23/

4-10*88/

3-10*23/

الکترونها

8-10*87/

8-10*07/

7-10*87/

7-10*07/

6-10*87/

6-10*07/

5-10*87/

پروتونها

جدول 1: طول موج ذرات (mm) در انرژی‌های مختلف Eo(eV)

با نگاهی به جدول 1 مشاهده می‌کنیم که فوتون‌های در ناحیه مریی (eV5/3 – 6/1) برای تمایز تا یک مایکرون و تشخیص اندازه‌های تا چند مایکرون مفید هستند. استفاده از فوتون‌های انرژی بالاتر یعنی در ناحیه UV تا محدود اشعه ایکس (eV1000 – 5) قدرت تمایز پذیری بیشتری را حاصل می‌نماید. اما با افزایش بیشتر انرژی (بزرگ‌تر از (eV) 1000) به علت افزایش اثر پخش شدگی (scattering) فوتون‌ها کاربرد خود را در محدوده طول موج‌های کوتاه به سرعت از دست می‌دهند

در مورد الکترون‌ها که معمولا” در محدوده انرژی‌های (eV) 105 – 102 به کار می‌روند، محدودیت طول موج در اندازه‌های اتمی، که چند آنگستروم (m10-10) می‌باشد، وجود نداشته اما دوباره محدودیت ناشی اثر بخش شدگی ظاهر میگردد، که توجه به استفاده از الکترون‌ها را کاهش می‌دهد. در خصوص به کارگیری یون‌ها، با توجه به جدول 1 حتی یون‌های با انرژی خیلی کم طول موجی بسیار کوتاهی دارا میباشند، و به علت آنکه دارای اندازه‌ای قابل مقایسه با اندازه‌های آرایه‌های اتمی می‌باشند، حوزه عمل آنها بسیار محدود بوده و دارای پخش شدگی بسیار ناچیز می‌باشند

به واسطه همین خصوصیات از یک طرف و امکان دست‌کاری (manipulation) آسان یون‌ها در میدآنهای الکتریکی و مغناطیسی، توجه به استفاده از یون‌ها در ساختارهای بسیار ریز در قرن جدید و آینده، که قرون ساختارهای بسیار ریز که اصطلاحا” فن‌آوری نانویی گفته می‌شود اهمیت می‌یابد. با توجه به خصوصیات این فن‌آوری، سیستم تحویل دهنده پرتو یونی باید یون‌هایی را آماده سازد که به صورت بسیار بالایی متمرکز شده، و دارای هم‌راستایی بسیار خوبی بوده و در نتیجه دارای پراکندگی بسیار کم و تابندگی بالا باشند

فضای فاز

برطبق مکانیک آماری مشخصه اصلی حرکت هر توزیع یونی در فضای فاز (phase space) که فضای معرف حرکت یون‌ها می‌باشد، به وسیله مختصات اندازه حرکت (p) و جابه‌جایی (q) بیان می‌گردد. برای سیستم‌های با سه درجه آزادی (x,y,z) این فضا، فضایی 6 بعدی را با مختصات (px,p y,p z) p iو (q x,q y,q z) q i تشکیل می‌دهد.در نتیجه برای یک حجم جزیی در فضای فاز داریم؛

dV6 = dq x dq y dq z dp x dp y dp z

و برای تعداد ذرات در این فضا خواهیم داشت

d6N = f6(q, p, t)dV6

که Vحجم کلی در این فضا و f دانسیته مکانی در فضای فاز (local phase space density)می‌باشد

اصل کلی در مکانیک آماری که بیانگر روابط مابین این مختصات و حرکت یون‌ها می‌باشد به قضیه لیوویل مشهور می‌باشد(1). برطبق این قضیه دانسیته(f) فضای فاز (phase space density) در طول مسیر یون‌ها نسبت به زمان مقداری است ثابت و در نتیجه توسط شرایط اولیه توزیع یونی تعیین می‌گردد

 از طرفی بر طبق مکانیک آماری هر توزیع یونی را که در تعادل ترمودینامیکی قرار دارد می‌توان توسط مفهوم اساسی دما مشخص نمود (1). در این صورت نتیجه کلی قضیه لیوویل و مفهوم دما، ارتباط دانسیته توزیع یون‌ها در فضای فاز و دمای توزیع یونی می‌باشد

phase space density = Constant *exp(E/kT)

به طور خلاصه می‌توان بیان داشت که هر چه دمای مجموعه‌ای از یون‌ها پایین تر باشد دانسیته توزیع یونی در فضای فاز بیشتر می‌گردد (شکل 1)

 

برای دریافت پروژه اینجا کلیک کنید

کلمات کلیدی :