سفارش تبلیغ
صبا ویژن

مقاله ترجمهDEA1 در pdf

 

برای دریافت پروژه اینجا کلیک کنید

  مقاله ترجمهDEA1 در pdf دارای 24 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله ترجمهDEA1 در pdf   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله ترجمهDEA1 در pdf ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله ترجمهDEA1 در pdf :

ترجمهDEA1

20 بررسی مقالات و دسته بندی
ساختار یا فرایند شبکه ای دو مرحله ای کلی را به صورتی که در شکل 1 نشان داده شده برای هر مجموعه DMUsn در نظر بگیرید. با به کار بردن نماد های چن و زو و کائو و هوانگ ، فرض می کنیم که هر DMUj (j=1,2,…..,n) دارای ورودی های m Xij (i=1,2,…..,n) برای مرحله ی اول و خروجی های D Zdj (d=1,2,…..,D) آن مرحله است.

 

سپس این ورودی ها تبدیل به خروجی های مرحله ی دوم می شوند و به عنوان معیارهای میانی یا واسطه ای نامیده خواهند شد. خروجی های مرحله ی دوم عبارتند ازy ij r=1,2,…..,s)).
ما به کارایی مرحله ی اول به عنوان e_j^1 و کارایی مرحله ی دوم به عنوانe_j^2 برای هر DMUj اشاره می کنیم. با استفاده از برگشت های ثابت به مقیاس (CRS) مدل DEA چارنز و همکارانش ، ما داریم:
e_j^1= (_(d=1)^Dw_d z_dj )/(_(i=1)^mv_i x_ij )

e_j^2= (_(r=1)^su_r y_rj )/(_(d=1)^Dw_d z_dj )
که v_i ، w_d، w _d و u_r همان وزن های غیر منفی شناخته شده هستند. توجه داشته باشید که w_d می تواند با w _d برابر باشد.
چهار نوع مقاله وجود دارند که از رویکردهای مختلف برای مدلسازی DMUs با فرایندهای دو مرحله ای استفاده می کنند. بعضی از این رویکردها معادل هستند.
21روش شناسی DEA استاندارد
نوع اول به آسانی از مدل DEA استاندارد استفاده می کند یعنی دو DEA جدا به ترتیب برای دو مرحله ی e_j^1 و e_j^2 به کار گرفته می شو

د. برای مثال، چلنگریین و شرمن فرایند دو مرحله ای دیگررا در اندازه گیری دقت پزشک توصیف می کنند. مرحله ی اول فرایند کنترل شده ی مدیری است که دارای ورودی هایی

 

مانند پرستاران دیپلمه دارای پروانه ی رسمی، تامین اجتماعی و هزینه های سرمایه ای و ثابت می باشد. این ورودی ها ، خروجی ها یا معیارهای های م

یانی یا متوسط ( ورودی های مرحله ی دوم ) از جمله روزهای بیماری، کیفیت د

رمان ، داروهای مصرف شده و سایر موارد را تولید می کنند. خروجی های مرحله ی دوم ( تحت کنترل پزشک ) شامل کمک هزینه های تحقیقی، کیفیت بیماران و کیفیت افراد آموزش دیده هستند. مثالهای دیگر شامل عملکرد شرکت های fortune500(سیفورد و زوی {2}؛ زوی {3}). سکستون و لوئیس {12}مشابه سیفورد و زوی {2} از رویکرد استاندارد DEA استفاده می کند جاییکه در یکی از مدلهای استاندارد DEA آنها، معیارهای میانی در مرحله دوم محاسبه کارایی مورد استفاده قرار می گیرد.
با این حال همانطور که قبلا مورد بحث قرار گرفته است چنین رویکردی Z_dj را در یک حالت هماهنگ در نظر نمی گیرد برای مثال فرض کنید که اولین مرحله دارای کارایی DEA باشد ولی مرحله دوم نباشد. وقتی که مرحله عملکرد خود را از طریق یک مدل DEA ورودی محور با کاهش دادن ورودیهای Z_dj بهبود می بخشد ممکن است Z_dj باعث ناکارآمدی مرحله اول شود.
22 روش شناسی تجزیه کارآمدی

مفید است این نکته را خاطرنشان کنیم که با در نظر گرفتن معیارهای کارآیی منفرد e_j^1 و e_j^2 به ترتیب برای مراحل 1 و 2 ، منطقی است که کارایی فرایند کلی دو مرحله ای را به عنوان 12(e_j^1+e_j^2 ) یا e_j^1 . e_j^2. اگر مدل DEA ورودی محور مورد استفاده قرار بگیرد دراین صورت ما باید این ملزومه را در نظر بگیریم که e_j^11 و e_j^21 تعریف بالا این اطمینان را می دهد که فرایند دو مرحله ای فقط و فقط زمانی کارآمد است که e_j^1=e_j^2=1 .
اگر ما e_j

=_(r=1)^sU_r Y_ro/_(i=1)^mv_i x_io را به عنوان کارآیی کلی دو مرحله ای در نظر بگیریم در این صورت ما به نوع دیگری از تحقیق مثل تحقیق کائو و هوهانگ{4} میرسیم که فرایند دو مرحله ای را توصیف می کند که در آن 24 شرکت بیمه غیرعمر از هزینه های عملیاتی و هزینه های بیمه برای ایجاد حق بیمه در مرحله اول و سپس سودهای تعهد شده و سرمایه گذاری شده در مرحله دوم استفاده می کنند همانطور که کائو و هوهانگ{4} بیان می کنند ما داریم e_j^1=e_j^1 . e_j^2 اگر به صورت بهینه ارائه شود ما فرض می کنیم که w_d=w _d.. توجه داشته باشید که چنین تجزیه کارآیی در رویکرد استاندارد DEA و رویکردهای شبکه ای DEA موجود نیست.
23 DEA شبکه ای
ما ذکر کردیم که در این مثالهای بالا معیارهای میانی تنها و

رودیهای مرحله دوم هستند یعنی هیچ ورودی اضافی مستقلی به آن مرحله وجود ندارد. البته انواع دیگری از فرایندهای دو مرحله ای و حتی DMU های دارای ساختارهای شبکه ای وجود دارند که ممکن است علاوه بر معیارهای میانی دارای ورودیهایی در مرحله دوم باشند. در یک حالت خیلی کلی تر از فرایندهای دو مرحله ای ، کاستلی و دیگران {7} DMU ه

ای دارای ساختارهای دو مرحله ای و دو لایه ای را مورد بحث قرار می دهند. ممکن است رویکرد DEA شبکه ای فار و ویتیکر {13} و فار و کروسکوپف {8} و رویکرد DEA شبکه ای slacks محور تون و توستوسی {14و 15} شامل بیشتر از دو مرحله باشد. فوکویاما و وبر {16} یک معیار slacks محور را برای یک فرایند دو مرحله ای با خروجی های بد در نظر می گیرند. اخیرا، چن {17} یک مدل DEA شبکه ای ارائه کرده است که شامل تاثیرات دینامیک در شبکه های تولید است. تعدادی از تحقیقات تجربی از این نوع تکنیک های DEA استفاده کرده اند مراجعه کنید به آوکیران {18} و یو و لی {19}. ما اینها را رویکردهای DEA شبکه ای می نامیم.
رویکردهای DEA شبکه ای مشابهی در فرایندهای دو مرحله ای توصیف شده در شکل 1 مورد استفاده قرار گرفته اند. برای مثال چن و زوی {10} تاثیر استفاده از تکنولوژی اطلاعات را روی عملکرد شعب بانک مورد مطالعه قرار داده اند {20}. چن و زوی {10}و چ

ن و همکارانش {9}تحت فرض مربوط به برگشت های متغیر به مقیاس (VRS)، از طریق یک فرایند دو مرحله ای مدلهای خطی و غیرخطی برای اندازه گیری تاثیر تکنولوژی اطلاعات روی عملکرد شرکت گسترش داده اند. با این حال امتیازهای کارایی مراح

ل منفردی آنها اطلاعات کافی در مورد عملکرد کلی و اقدامات فرایند دو مرحله ای ارائه نمی کنند.
24 رویکردهای بازی – عملی
نوع چهارم رویکرد از مفاهیم نظریه بازیها استفاده می کند این رویکرد از کار لیانگ و همکارانش {5} منشا می گیرد که از DEA برای اندازه گیری زنجیره های عرضه ی دارای دو عضو استفاده می کنند. در کار لیانگ و همکارانش {5}، مفاهیم بازی استاکلبرگ (یا رهبر- دنباله رو ) و بازی مشارکتی در جهت توسعه مدلهایی برای اندازه گیری عملکرد در زنجیره های عرضه مورد استفاده قرار می گیرد. ما باید این نکته را در این مقاله خاطرنشان کنیم که ، مرحله دوم (خرده فروش) نه فقط دارای ورودیهای مرحله اول (تولید کننده) است، بلکه دارای ورودیهای مربوط به خود است که با مرحله اول مربوط نیست یعنی ورودیهای اضافی برای مرحله دوم معرفی می شوند. در نتیجه خواهیم داشت e_j=_(r=1)^sU_r Y_rj/_(d=1)^DW _d Z_dj +_(h=1)^HQ_H X_hj^2 ، که در آن X_hj^2 (h=1,…,H) ورودیهای مرحله دوم هستند که به مرحله اول مربوط نیستند. در این حالت ممکن است بهتر باشد که کارایی کلی را به عنوان 1/2(e_j^1+e_j^2 )، چون e_j^1.e_j^2 به یک

مشکل غیر خطی منجر می شود.
ما اشاره کردیم که مدلهای آنها می توانند به صورت مستقیم برای فرایند دو مرحله ای توصیف شده در شکل 1 به کار گرفته شوند، چون هیچ ورودی اضافی دیگری وجود ندارد. X_hj^2 (h=1,…,H) ، ساختار زنجیره عرضه ی دو عضوی آنها مشابه فرایند دو مرحله ای نشان داده شده است. لیانگ و دیگران {6} با استفاده از اصول مدلسازی مشابه لی

انگ و دیگران {5} مدلهای مفصلی برای فرایند دو مرحله ای ارائه کرده اند.
در حالی که این مقاله روی فرایندهای دو مرحله ای که فقط دارای معیارهای میانی متصل کننده مراحل است تمرکز می کند، ما ارتباطات بین مدلهای DEA برای فرایندهای دو مرحله ای خاص و برای ساختارهای شبکه ای خیلی کلی را نیز مورد بحث قرار خواهیم داد.
بخش هایی که بعدا ارائه خواهند شد ارتباطات بین چهار رویکرد توصیف شده در بالا بخصوص ارتباط کار لیانگ و همکارانش {5} به کار کائو و هوهانگ {4}، {7}و رویکرد DEA شبکه ای فار و گروسکوپف {8} را مورد بررسی قرار خواهند داد. خاطرنشان می کنیم که از چهار گروه توصیف شده در بالا، ما فقط روی تحقیق مربوط به 22، 23، و 24 تمرکز خواهیم کرد. ما نشان می دهیم که روش های ارائه شده در این سه گروه می توانند به سه دسته، آنهایی که رویکرد بازی مشارکتی یا تمرکزی را دارند، آنهایی که روی

کرد بازی استالکبرگ یا تمرکز زدایی شده را اتخاد می کنند و آن دسته که دارای رویکرد DEA شبکه ای هستند تقسیم بندی کنیم.
3 مدل تمرکز یافته
لیانگ و همکاران نشان می دهند که با استف

اده از راه کار نظریه ی بازیهای مشارکتی یا کنترل تمرکزی، فرایند دو مرحله ای می تواند به صورت یکی که مراحل به صورت مشترک مجموعه ای از وزن های مطلوب بر عوامل واسطه تعیین شود تا امتیاز کارایی آنها را افزایش دهد. این در مواقعی که تولید کنندگان و خرده فروشان مشترکاً قیمت، مقدار سفارش و غیره را تعیین می کنند تا به بیشترین سود برسند. به عبارت دیگر، روش متمرکز یا مشارکتی به وسیله ی گذاشتن w_d=

w_d در (1)مشخص می شوند و امتیازات کارایی هر دو مرحله به صورت هم زمان بهینه سازی می شود. بهینه سازی می تواند بر اساس افزایش میانگینe_(0 )^1 و e_0^2 در برنامه ی غیر خطی مانند برنامه لیانگ و همکاران، کائو و همکاران باشد. با این حال ذکر شده است که به دلیل فرضw_d=w_d در (1)، e_(0 )^1 .e_0^2 می شود _(r=1)^su_r y_ro /_(i=1)^mv_i x_io . بنابرین به جای بالا بردن میانگینe_(0 )^1 و e_0^2، داریم:
e_0^centralized=Max e_(0 )^1 .e_0^2 _(r=1)^su_r y_ro /_(i=1)^mv_i x_io

e_j^11 وe_j^21 وw_d=w_d (2)
مدل (2) می تواند به شکل برنامه ی خطی زیر در بیاید:
e_0^centralized=Max _(r=1)^su_r y_ro

_(r=1)^su_r y_rj - _(d=1)^dw_d z_dj 0 j=1,2,…,n (3)
_(d=1)^Dw_d z_dj - _(i=1)^mv_i x_ij 0 j=1,2,…,n
_(i=1)^mv_i z_io =1
w_d0,d=1,2,…,D; v_i0,i=1,2,…,m; u_r0,r=1,2,…,s

مدل (3) مدل کائو و هوانگ است و مدل متمرکز در [6] ایجاد می شود. به

خاطر داشته باشید که محدودیت های _(r=1)^su_r y_rj -

_(i=1)^mv_i x_ij 0 در مدل کائو و هوانگ تکرار می شود ، زیرا _(r=1)^su_r y_rj - _(d=1)^dw_d z_dj 0و _(d=1)^Dw_d z_dj - _(i=1)^mv_i x_ij 0 ، _(r=1)^su_r y_rj - _(i=1)^mv_i x_ij 0 را می رساند.
مدل (3) کارایی کلی فرایند دو مرحله ای را می رساند. تصور کنید که مدل (3) ی بالا تنها یک راه حل داشته باشد. بنابرین می توانیم به

 

 

e_j^(1,centralized)= (_(d=1)^Dw_d^* z_do )/(_(i=1)^mv_i^* x_io )=_(d=1)^dw_d^* z_do وe_0^(2,centralized)= (_(r=1)

^su_r

^* y_ro )/(_(d=1)^Dw_d^* z_do ) (4)

مانند کارایی های مراحل اول و دوم دست یابیم. اگر مقدار بهینه را برای مدل (3) را به صورت e_0^centralized، مشخص کنیم بنابرین خواهیم داشت
e_0^centralized= e_0^(1,centralized).e_0^(2,centralized).
اگر در ساختمان داخلی کاستلی و همکاران فقط یک لایه را در نظر بگیریم، می توان به تجزیه ی کارایی بالا رسید. بنابرین، روش های کاستلی و همکاران و کائو و هوانگ را می توان به صورت مدل های بازی مشارکتی دید.
همانگونه که در مدل کائو و هوانگ بیان شد، ممکن نیست ضریب تکاثر بهینه از مدل (3) منحصر به فرد باشد. آنها استنتاج بیشترین مقدار قابل دسترسی e_0^(1,centralized) یا e_0^(2,centralized) را پیشنهاد می کنند. در واقع، همانطور که در [6] نشان داده می شود، مدل آنها نیز می تواند برای بررسی e_0^(1,centralized) و e_0^(2,centralized) استفاده شود. بیشترین مقدار قابل دسترسی e_0^(1,centralized) را می توان از طریق
e_0^(1+)=Max _(d=1)^Dw_d z_do
تعیین کرد.
_(r=1)^su_r y_ro = e_0^centralized
_(d=1)^Dw_d z_do - _(i=1)^mv_i x_ij 0 j=1,2,…,n (5)
_(r=1)^su_r y_rj- _(d=1)^Dw_d z_dj 0 j=1,2,…,n
_(i=1)^mv_i x_io =1
w_d0,d=1,2,…,D; v_i0,i=1,2,…,m; u_r0,r=1,2,…,s

این، کمترین e_0^(2,centralized) را به بار می دهد یعنی

e_0^(2-)=e_0^centralized/e_0^(2+). بیشترینe_0^(2,centralized) می تواند ار طریق برنامه ی خطی زیر محاسبه شود،

e_0^(2+)=Max _(r=1)^su_r y_ro

_(r=1)^su_r y_ro - e_0^centralized _(i=1)^mv_i x_io =0
_(r=1)^su_r y_rj- _(d=1)^Dw_d z_dj 0 j=1,2,…,n (6)
_(d=1)^Dw_d z_dj - _(i=1)^mv_i x_ij 0 j=1,2,…,n
_(d=1)^Dw_d z_do =1
w_d0,d=1,2,…,D; v_i0,i=1,2,…,m; u_r0,r=1,2,…,s

و سپس کمترین e_0^(1,centralized) را به صورت e_k^(1-)= e_0^centralized/e_0^(2+) محاسبه شود. به یاد داشته باشید که e_0^(1-)= e_0^(1+) است فقط و فقط زمانی که e_0^(2-)= e_0^(2+) باشد. همچنین به یاد داشته باشید که اگر e_0^(1-)= e_0^(1+) یا e_0^(2-)= e_0^(2+) باشد، پس e_0^(1,centralized) و e_0^(2,centralized)منحصرا از طریق مدل (3) تعیین می شوند. اگر e_0^(1-)e_0^(1+) یا e_0^(2-) e_0^(2+) باشد، روشی را کشف کنید که بتوانید به تجزیه ی دیگری از e_0^(1,centralized) و e_0^(2,centralized) دست یابید.

جدول 1

شرکت های بیمه ی غیر عمر در تایوان

سود سرمایه گذاری (y2) سود پذیره نویسی (y1) حق بیمه ی اتکائی (z2) حق بیمه های نوشته شده به صورتمستقیم (z1) مخارج بیمه (x2) مخارج عملیات (x1) شرکت DMU
681687 984143 856735 7451757 673512 1178744 تایوان فایر 1
834754 1228502 1812894 10020274 1352755 1381822 چونگ کو 2
658428 293613 560244 4776548 5

92790 1177494 تای پینگ 3
177331 248709 371863 3174851 594259 601320 چاینا مارینرز 4
3925272 7851229 1753794 37392862 3531614 6699063 فوبون 5
415058 1713598 952326 9747908 668363 2627707 زوریچ 6
439039 2239593 643412 10685457 1443100 1942833 تائیان 7
622868 3899530 1134600 17267266 1873530 3789001 مینگ تائی 8
264098 1043778 546337 11473162 950432 1567746 سنترال 9
554806 1697941 504528 8210389 1298470 1303249 د فیرست 10
18259 1486014 643178 7222378 672414 1962448 کو هو 11
909295 1574191 1118489 9434406 650952 2592790 یونیین 12
223047 3609236 811343 13921464 1368802 2609941 شینگ کونگ 13
332283 1401200 465509 7396396 988888 1396002 چین جنوبی 14
555482 3355197 749893 10422297 651063 2184944 کاتای سنچری 15
197947 854054 402881 5606013 415071 1211716 آلیانز پریزیدنت 16
371984 3144484 342489 7695461 108

5019 1453797 نیوا 17
163927 692731 995620 3631484 547997 757515 ای.آی.یو 18
46857 519121 483291 1141950 182338 159422 آمریکای شمالی 19
26537 355624 131920 316829 53518 145442 فدرال 20
6491 51950 40542 225888 26224 841

71 روبال 21
4181 82141 14574 52063 10502 15993 آسیا 22
18980 01 49864 245910 28408

54693 ای.ایکس.ای 23
16976 142370 644816 476419 235094 163297 میتسو سومیتومو 24

جدول 1 اطلاعات را در 24 شرکت بیمه ی غیر عمر در تایوان نشان می دهد که دارای دو اندازه ی متوسط است. دو ورودی به مرحله ی اول، هزینه های عمل و هزینه های بیمه هستند. اندازه های متوسط ( یا خروجی های حاصل از مرحله ی اول ) حق بیمه های مکتوب مستقیم و حق بیمه ی مجدد هستند. خروجی های مرحله ی دوم ( تولید سود )، سود پذیره نویسی و سود سرمایه گذاری می باشند.
امتیازات کارایی برای دو مرحله ی مجزا بر اساس (4) و از طریق مجموعه ای از راه حلهای حاصل از مدل (3) محاسبه می شوند ( ستون های دوم، سوم و چهارم جدول 2 را ببینید ). به خاطر داشته باشید که تجزیه های کارایی با تجزیه های موجود در مدل کائو و هوانگ برابرند. در واقع، استفاده از مدل های (5) و (6) نشان می دهد که برای همه ی DMU ها برابر e_0^(1-)= e_0^(1+) و e_0^(2-)= e_0^(2+) است. بنابرین، e_0^(1,centralized) و e_0^(2,centralized) تعریف شده در مدل (4) یا تجزیه های کارایی در کائو و هوانگ منحصرا از طریق مدل (3)
تعیین می شوند.

جدول 2
نتایج برای شرکت های بیمه ی غیر عمر در تایوان

مدل متمرکزمرحله ی 1 به عنوان هادی مرحله ی 2 به عنوان هادی_________ ___________________________ __________________________________________________

e_0^cooperative e_0^(2,cooperative) e_0^(1,cooperative) e_0^(1*) e_0^(1*) e_0^(2*).e_0^(1*) e_0^(10*) e

_0^(20*) e_0^(20*). e_0^(10*)

066074 071337 092622 069923 070447 099257 069923 070447 099257 1
062175 062748 099086 062477 062571 09985 062477 062571 09985 2
069002 1 069002 069002 1 069002 69002 1 069002 3
021526 043231 0

49792 030422 041999 072435 030422 041999 072435 4
073759 1 073759 067478 08057 083752 076698 092334 083066 5
038968 040566 096062 038645 040101 096396 038968 040566 096062 6
01613 053784 029991 026485 035216 075208 027658 041241 067064 7
019939 051135 038992 02743 037803 07256 027517 041503 066302 8
012818 029196 043904 022328 022328 1 022328 022328 1 9
017425 06736 025868 046596 054084 086154 046596 054084 086154 10
015414 032667 047185 012407 016753 074055 016392 025344 064679 11
075958 075958 1 075958 075958 1 075958 075958 1 12
018391 054349 033839 019705 024306 081068 020781 030925 067198 13
016034 051782 030964 027098 037396 072462 028864 043086 066992 14
050041 070473 071007 061383 061383 1 061383 061383 1 15
023035 038475 059872 030443 033557 09072 032015 036152 088558 16
02507 1 02507 033242 045958 072331 036001 057363 062761 17
024477 037366 065507 025884 032619 079354 025884 032619 079354 18
040697 041578 097884 04112 04112 1 04112 04112 1 19
036711 090137 040728 054655 058566 093322 054655 058566 093322 20
019336 027951 069178 019688 026232 075052 020078 027425 07321 21
058952 1 058952 058952 1 05

8952 058952 1 058952 22
038141 055992 068119 038358 045124 085005 042034 049889 084256 23
013359 033509 039866 008703 008703 1 013481 031447 042869 24

4 بازی استالکبرگ
در بخش قبلی ما رویکرد بازی مشارکتی یا تم

رکزی را به مشکل دو مرحله ای مورد بررسی قرار دادیم در این بخش ما به فرایند دو مرحله ای از دیدگاه بازی غیرمشارکتی خواهیم پرداخت. رویکرد غیرمشارکتی با رهبر – پیرو یا بازی استالکبرگ توصیف می شود برای مثال یک موردی از زنجیره عرضه را در نظر بگیرید که در آن تبلیغات غیرمشارکتی از طرف تولید کننده (رهبر) و خرده فروش (پیرو) وجود دارد. تولید کننده بر اساس محاسبه تبلیغات محلی خرده فروش، سرمایه گذاری بهینه ی نام برند و کسب اجازه ی تبلیغات محلی را تعیین می کند تا سود خود را به حداکثر برساند. از طرف دیگر خرده فروش به عنوان پیرو، بر اساس اطلاعات بدست آورده از تولید کننده، هزینه تبلیغات محلی را تعیین می کند تا سود خود را به حداکثر برساند {21}. به همین روش اگر ما فرض کنیم که مرحله اول شامل رهبر باشد، در این صورت عملکرد مرحله دوم خیلی مهم خواهد بود و کارایی مرحله دوم با در نظر گرفتن ثابت ماندن کارایی مرحله اول محاسبه خواهد شد. ما در ابتدا کارایی مرحله اول را محاسبه می کنیم. بر اساس مدل CRC، برای یک DMUo خاص خواهیم داشت:

e_0^(1*)= Max _(d=1)^Dw_d z_do
_(d=1)^Dw_d z_dj - _(i=1)^mv_i x_ij 0 j=1,2,…,n (7)
_(i=1)^mv_i x_io =1
w_d0,d=1,2,…,D; v_i0,i=1,2,…,m.
توجه داشته باشید که مدل (7) یک مدل DEA (CCR) استاندارد است. یعنی e_0^(1*) امتیاز کارایی منظم DEA است.
زمانی که ما کارایی را برای مرحله ی اول بدست آوردیم، مرحله دوم فقط w_d را در نظر خواهد گرفت که ارئه می کند e_0^1=e_0^(1*). یا بعبارتی دیگر، حالا مرحله دوم _(d=1)^Dw_d z_dj ، را بعنوان ورودی منفرد در معرض محدودیت که امتیاز کارایی مرحله اول در e_0^(1*) باقی می ماند در نظر می گیرد. مدل برای محاسبه ی e_0^2، کارایی مرحله دوم را می توان از فرمول ({6}) محاسبه کرد.

e_0^(2*)=Max (_(r=1)^su_r y_ro )/(Q _(d=1)^Dw_d z_do )
(_(r=1)^su_r y_rj )/(Q _(d=1)^Dw_d z_dj )
_(d=1)^Dw_d z_dj - _(i=1)^mv_i x_ij 0 j=1,2,…,n (8)
_(i=1)^mv_i x_io =1
_(d=1)^Dw_d z_do =e_0^(1*)

U_r,Q,W_d,V_i0,r=1,2,…,s;d=1,2,…,D;i=1,2,…,m
توجه داشته باشید که در مدل (8)، کارایی مرحله اول برابر با e_0^(1*) در نظر گرفته می شود. بیایید u_r=U_r/Q,r=1,2,…,s در نظر می گیریم.در این صورت مدل (8) معادل با مدل خطی زیر خواهد بود:
e_0^(2*)=Max(_(r=1)^su_r y_ro )/e_0^(1*)

_(r=1)^SU_r y_rj - _(d=1)^Dw_d z_dj 0 j=1,2,…,n
_(d=1)^Dw_d z_dj -(i=1)^mv_i x_ij 0 j=1,2,…,n
_(i=1)^mv_i x_io =1
_(d=1)^Dw_d z_do =e_0^(1*)
W_d0,d=1,2,…,D; V_i1,2,…,m; u_r0,r=1,2,…,s
به همین روش، اگر ما مرحله دوم را به عنوان رهبر بگیریم در این صورت ما کارایی DEA منظم را (e_0^(2^° )) برای مرحله دوم محاسبه می کنیم. زمانی که ما کارایی مرحله دوم را بدست می آوریم کارایی مرحله اول یعنیe_0^(1^° ) از طریق مسئله خطی زیر محاسبه می شود.
1/(e_0^(1^° ) )=Min_(i=1)^mv_i x_io
_(d=1)^Dw_d z_dj -_(i=1)^mv_i x_ij 0 j=1,2,…,n
_(r=1)^SU_r y_rj - _(d=1)^Dw_d z_dj 0 j=1,2,…,n
_(d=1)^Dw_d z_do =1

_(r=1)^SU_r y_rj =e_0^(2^° )
W_d0,d=1,2,…,D; V_i1,2,…,m; u_r0,r=1,2,…,s
ما خاطر نشان می کنیم که در (9)، با e_0^(1*).e_0^(2*)=_(r=1)^SU_r^* y_ro در حالت بهینه است. توجه داشته باشید _(i=1)^mv_i^* x_io=1, i,e. e_0^(1*).e_0^(2*)=_(r=1)^SU_r^* y_ro /_(i=1)^mv_i^* x_io که در حالت بهینه _(r=1)^SU_r^* y_ro/ _(i=1)^mv_i^* x_io =e_0^(1^° ).e_0^(2^° ) در مدل (10) است. این نشان می دهد که رویکرد رهبر پیرو به یک تجزیه کارایی برای فرایند دو مرحله ای اشاره می کند یعنی کارایی کلی، محصول کارایی مراحل منفرد است. بعدا به این نکته توجه داشته باشید که در مورد رهبر مرحله ی اول e_0^(1*) و e_0^(2*) و در مورد رهبر مرحله ی دوم e_0^(1^° ) و e_0^(2^° ) مقادیر بهینه مسائل خطی هستند. بنابراین چنین تجزیه کارایی منحصر بفرد است و با راه حل های بهینه ممکن تحت تاثیر قرار نمی گیرد. با این حال، ممکن است دو رویکرد تجزیه کارایی مشابهی ارائه نکنند.
توجه داشته باشید که در نهایت مجموعه مشترکی از وزن ها در هر دو مرحله در رویکردهای بازی استالکبرگ و تمرکزی مورد استفاده قرار می گیرد. با این حال در رویکرد بازی استالکبرگ امتیازات کارایی دو مرحله e_0^1 و e_0^2 بصورت همزمان بهینه نشده اند.
لیانگ و همکارانش {6} نیز روابط بین مدل های غیرمشارکتی و تمرکزی و رویکرد DEA استاندارد را مورد بررسی قرار دادند. در اینجا ما یافته

های آنها را خلاصه می کنیم.
بیایید _0^1 و _0^2 امتیازات کارایی استاندارد CRC برای دو مرحله در نظر بگیریم.
قضیه 1 اگر فقط یک معیار میانی وجود داشته باشد در اینصورت e_0^(1*)=_0^1 و e_0^(2*)=_0^2 خواهد بود بدون در نظر گرفتن این فرض که آیا مرحله اول یک رهبر است یا پیرو، که در آن e_0^(1*) و e_0^(2*) از طریق رویکرد غیرمشارکتی بدست می آید.
قضیه 1 نشان می دهد که زمانی که فق

ط یک معیار میانی وجود دارد، رویکرد غیرمشارکتی هنگام به کار بردن مدل DEA استاندارد به هر مرحله نتایج مشابهی ارائه می کند.
تحت شرایط معیارهای میانی متعدد ما داریم:
قضیه 2 برای یک DMUo ، e_0^centralizede_0^(1*).e_0^(2*) که در آن e_0^centralized همان مقدار بهینه برای مدل (3) و e_0^(1*) و e_0^(2*) از طریق رویکرد غیرمشارکتی (رهبر ـ پیرو) بدست می آید. بر اساس قضایای 1 و 2 ما باید داشته باشیم:
قضیه 3 اگر فقط یک معیار میانی وجود داشته باشد در این صورت e_0^centralized=_0^1_0^2 با _0^1=e_0^(1,centralized) و _0^2=e_0^(2,centralized) ،که در آن _0^1 و _0^2 همان امتیازات کارایی CRS برای دو مرحله هستند و e_0^(1,centralized) و e_0^(2,centralized) در (4) تعریف شده اند.

 

برای دریافت پروژه اینجا کلیک کنید

کلمات کلیدی :