مقاله PREDICT CUSTOMER CHURN BY USING ROUGH SET THEORY AND NEURA

 

برای دریافت پروژه اینجا کلیک کنید

مقاله PREDICT CUSTOMER CHURN BY USING ROUGH SET THEORY AND NEURAL NETWORK تحت pdf دارای 8 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله PREDICT CUSTOMER CHURN BY USING ROUGH SET THEORY AND NEURAL NETWORK تحت pdf کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله PREDICT CUSTOMER CHURN BY USING ROUGH SET THEORY AND NEURAL NETWORK تحت pdf ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله PREDICT CUSTOMER CHURN BY USING ROUGH SET THEORY AND NEURAL NETWORK تحت pdf :

سال انتشار: 1391
محل انتشار: نهمین کنفرانس بین المللی مهندسی صنایع
تعداد صفحات: 8
نویسنده(ها):
Razieh Qiasi – University of Qom
Zahra Roozbehani – University of Shahid Beheshti
Behrooz Minaei-Bidgoli – University of Science and Technology

چکیده:

A major concern for modern enterprises is to promote customer value, loyalty and contribution through services which can help establishing long-term relationshipswith customers. Organizations have found that retaining existing customers is more valuable than attracting new customers. Therefore, preventing customer churn by customer retention to achieve maximum profit is a critical issue in customer relationship management. In order to effectivelymanage customer churn for companies, it is important to build a more effective and accurate customer churn prediction model. Data mining and statistical techniques can be used to construct prediction models. This paper aims to identify most appropriate models base on data mining techniques. In this paper, rough set theory has been used for feature selection. It aims to find the most effective features in order to reducecustomer loss. Then, neural networks are used in order to create the model. Finally, to evaluate performance of the model five measures (accuracy, precision, Recall, F-measure, Lift) were used. Results show that our proposed model provides acceptable performance in terms of evaluation measures.

 

 

برای دریافت پروژه اینجا کلیک کنید

کلمات کلیدی :